

Addressing Climate Change in Winemaking: Managing Alcohol and Acidity

Track: Winemaking 9:30am - 10:30am

> Conference Track Presented by:

MODERATOR

Eglantine Chauffour Enology Director / Bucher Vaslin North America

Isabelle Mort Winemaker / Flanagan Winery

@WINexpo

PRODUCED BY WINE INDUSTRY NETWORK

#WINexpo

CLIMATE CHANGE: SOLUTIONS FOR WINEMAKING

Lieh

LAMOTHE-ABIET

COSTRAL

BUCHER vaslin Eglantine Chauffour, Oenology Director, Bucher Vaslin North America Isabelle Mort, Winemaker, Flanagan Winery

www.bvnorthamerica.com

@buchervaslinnorthamerica

OSTRAI

CHER

Climate Change: Oenological Consequences

- Degradation of malic acid
 - pH increases => Microbial instability + Mouthfeel impact + Colloidal instability
- Higher sugar concentration
 - Increase alcohol content => Impact on Mouthfeel + Colloidal instability

• Change in aromatic maturity

• Lack of freshness

Change in phenolic maturities

- Color instabilities
- Mouthfeel impact

Unstable and unbalanced wines Not in the consumer trend

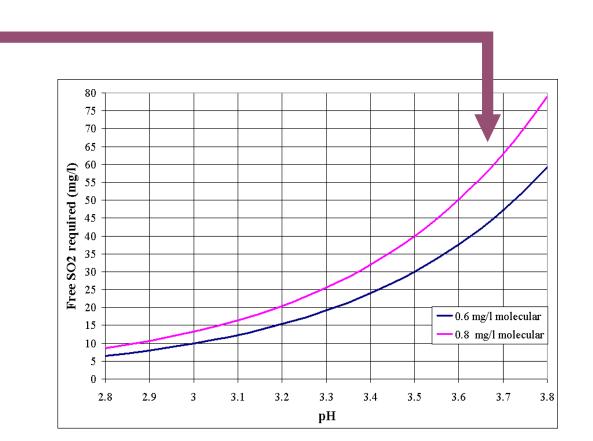
OSTRAL

BUCHER vaslin

Climate Change Winemaking Solutions: Program

1. SO₂ alternatives for microbial control

- Bio-protection as alternatives to SO_2 on grapes
- Alternatives to SO₂ for microbial control on wines during ageing
- 2. Balance acidity and alcohol in wines
 - NEW! Natural acidification of wines during fermentation
 - Isabelle Mort: Trial Tasting + Winemaker feedback
- 3. Increase freshness in wines
 - Boost fresh aromas production during fermentation
 - Increase wines aromas expression during ageing => Trial Tasting



1-SO₂ Alternatives for Microbial Control

• pH increases => SO₂ not effective as anti-microbial

	Bound SO ₂	FSO ₂	
		HSO3 [−]	SO ₂
ANTIMICROBIAL	0		+
ANTIOXIDANT	0	+	+
ANTIOXIDASIC	0	+	+

Alternative to SO_2 for microbial control on grapes |Bio-protection

Natural way to inhibit unwanted microbial development by introduci neutral micro-organisms.

Excellence B-Nature: bio-protector

- ✓ Pure Metschnikowia Pulcherima (MP)
- ✓ Efficient anti-microbial effect
- ✓ Strong dominance, Fast implantation
- ✓No/Low fermentation capacities
- \checkmark No inhibition of Saccharomyces cerevisiae
- \checkmark No off-flavors production: low H₂S, low ethylacetate, POF(-)
- ✓ Resists to (35-85°F), TSO₂: 60 ppm, pH >3
- ✓ Easy to Use in Winemaking: Sprinkle on grapes/juice/equipment. 50 g/ton

OSTRAL

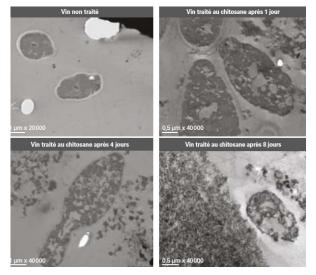
Alternative to SO₂ for microbial control during ageing Chitosan

OSTRAL

CHER

ð

KILLBRETT = 100% chitosan


- Polysaccharide derived from *Aspergillus niger*
- Vegan, allergen free, biodegradable, anti-microbial agent
- Wide spectrum anti-microbial effect
- Efficient treatment at low dosage

Prevention

4 g/hL •

Curative

- 6 8 g/hL
- Racking
- 2 g/hL for protection

Leakage cells, death cells

Mecanisms of chitosan on Brettanomyces. 1, 4 and 8 days after addition. Electronic microscope x15000 Nazaris et al. 2016

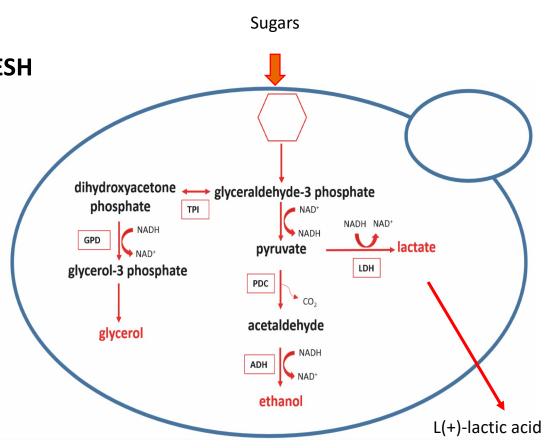
2-Tools for Acidity Management

Treatments with acids :

- Tartaric \Rightarrow Variable efficiency because of K⁺ potential, Unstable, Hard Mouthfeel.
- Malic
 Unstable, Hard Mouthfeel
- Lactic ⇒ Stable, Soft Acid, Fining agent.

Natural Acidification with yeast: Lachancea Thermotolerans

OSTRAL


CHER

8

vaslin

What is Lachancea Thermotolerans?

- Non-Saccharomyces strain (also known as Kluyveromyces thermotolerans)
- Strong genetic diversity => Selection of **Excellence XFRESH**
- Medium fermentation capacity (7 9% vol.)
 - Need S. cerevisiae to complete AF
- Metabolize sugar into L-lactic acid
 - Decrease Alcohol
 - Decrease pH
 - Increase TA (Lactic acid)
- Produce esters/acetates

How to use Excellence X-FRESH ?

- Max 50 ppm SO2 at harvest
- Rehydration in chlorine-free water, 104° F, with 20 g/hL **OenoStim**
- Dosage: 20 g/hL
- Nutrition: + 20 g/hL of DAP 24h after inoculation
- Min temp: 59° F
- Addition :
 - Co-fermentation: Excellence XFRESH + *S.cerevisiae* on the same day
 - Sequential: (1) Excellence XFRESH + (2) *S.cerevisiae* 48-72 hrs after

OSTRAL

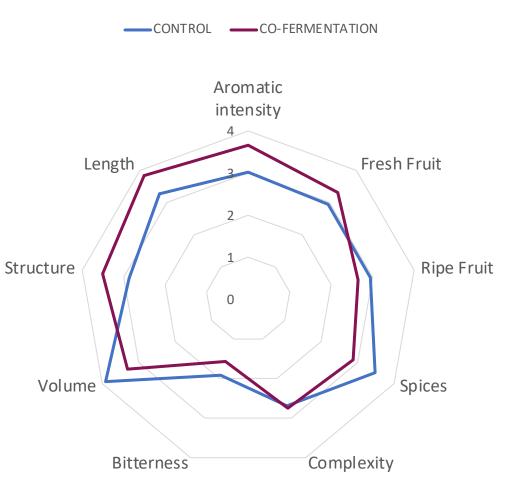
Excellence XFRESH: Winery Trial Results

CS Results post MLF

	CONTROL	CO-FERMENTATION	SEQUENTIAL
Alcohol (% vol.)	13.7	13.6	13.4
Total acidity (g/L)	4.51	5.47	6.49
рН	4.03	3.92	3.76
Volatile acidity (g/L)	0.5	0.4	0.4
Lactic acid (g/L)	1.24	2.32	2.82
Molecular SO2	0.11	0.14	0.2

- Co-fermentation and Sequential
 - Lower alcohol than control (- 0.3)
 - Higher total acidity
 - Lower pH (- 0.27)
- Sequential = higher impact than Co-fermentation

COSTRAL


COSTRAL

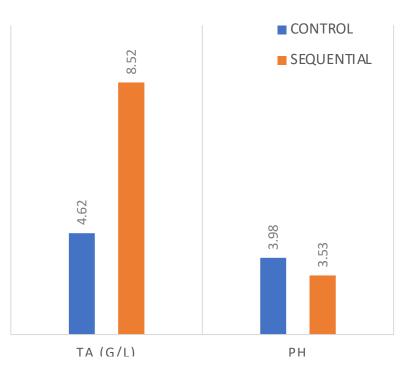
BUCHER vaslin

Excellence XFRESH: Winery Trial Results

Merlot Results post MLF

	CONTROL	CO-FERMENTATION
Alcohol (% vol.)	16.4	16.0
Total acidity (g/L)	5.41	6.55
рН	3.69	3.57
L-lactic acid (g/L)	0.24	1.8
VA (g/L)	0.4	0.4
Molecular SO2	0.32	0.41

COSTRAL


BUCHER vaslin

pH initial : 3.43 - Alc: 13.5% Temp : 64-66°F Sequential inoculation : 24h – 20 g/hL SAUVIGNON BLANC - PRESS FRACTIONS -SANCERRE. PH: 3.43, ALC: 13.5% CONTROL SEQUENTIAL

Excellence XFRESH: Winery Trial Results

- pH initial : 3.98 Alc:15%
- Température : 70°F
- Co-fermentation 20 g/hL
- Ø SO2 at Crush bio-protection

MERLOT - MARGAUX. PH: 3.98, ALC: 15%

5.04

TA (G/L)

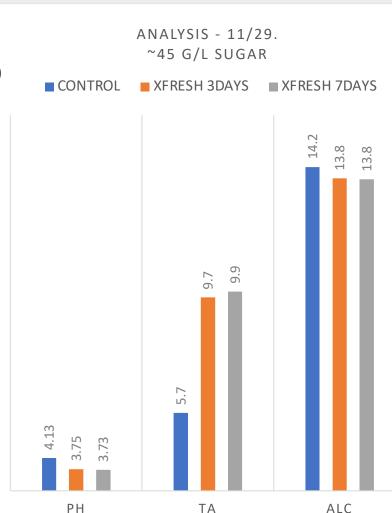
ΡН

3.05

3.43

Excellence XFRESH: Trial at Flanagan Winery

- CS Brandt Ranch, Kelsey Bench 2022
- Harvest: 10/27 pH: 3.98 TA: 3.41 Malic: 2.13 Brix: 27.7/29
- Trial
 - Control: Excellence XR
 - Trial1: Excellence XFRESH + 3 days after Excellence XR
 - Trial2: Excellence XFRESH + 7 days after Excellence XR
- Tasting

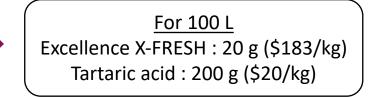


Control

XFRESH + 3days

XFRESH + 7days

Excellence XFRESH Applications


Co-inoculation	 0.5 g/L of Lactic acid Light effect on analysis Excellent organoleptic impact : freshness and aromatic complexity
Sequential	 48h after inoculation : ~ 1 g/L of Lactic acid 72h after inoculation : ~ 2 g/L of Lactic acid Best results in term of pH and total acidity modulation
Blender Tank	 Excellence XFRESH: max 12 g/L Lactic Acid Tank = acidifier for blending MLF is not posible. Blend before

Tools to Manage Acidity: Economic Study

Example Trial - CS - Entre Deux Mers

To reach same result with tartaric acid: +2 g/L

<u>\$ for 100 L</u> Excellence X-FRESH : **\$ 3.6** Tartaric acid : **\$ 4**

COSTRAL

EXCELLENCE X-FRESH can be economically interesting

OSTRAL

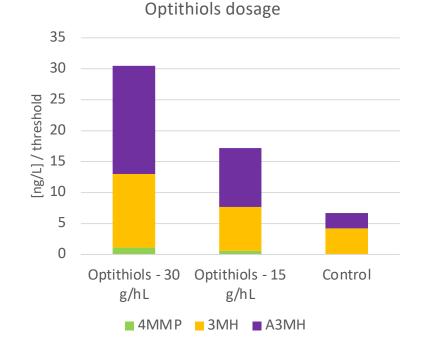
HER

3- Refresh Wine Aromas

- Wine aromas
 - Esters/Acetates
 - Thiols
 - Terpenes /Nor-isoprenoids (enhancement of aromas)
- Boost production of aromas during fermentation with yeast metabolism
 - Yeast choice
 - Yeast nutrition
- Boost aromatic expression during ageing with enzymatic activities

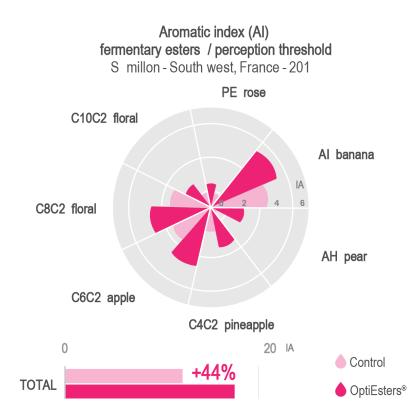
OSTRAI

CHER


BU

vaslin

OptiThiols/OptiEsters: Trials Results


OPTITHIOLS[®]

- Inactivated yeasts, rich in –SH peptides
 - Cysteine, Homo-cysteine, Glycine-Cysteine, Glutamyl-Cysteine, N-acetylcysteine, Glutathione
- At inoculation, 15-30 g/hL

OPTIESTERS[®]

- Selection of amino acids and ergosterols
- Early fermentation, 30 g/hL

OSTRAL

CHER

Boost Varietal Aromas Expression During Ageing

- Varietal aromas
 - Thiols
 - Terpenes
 - Nor-isoprenoids
- Need enzymatic action to express aromatic precursors

OENOZYM THIOLS

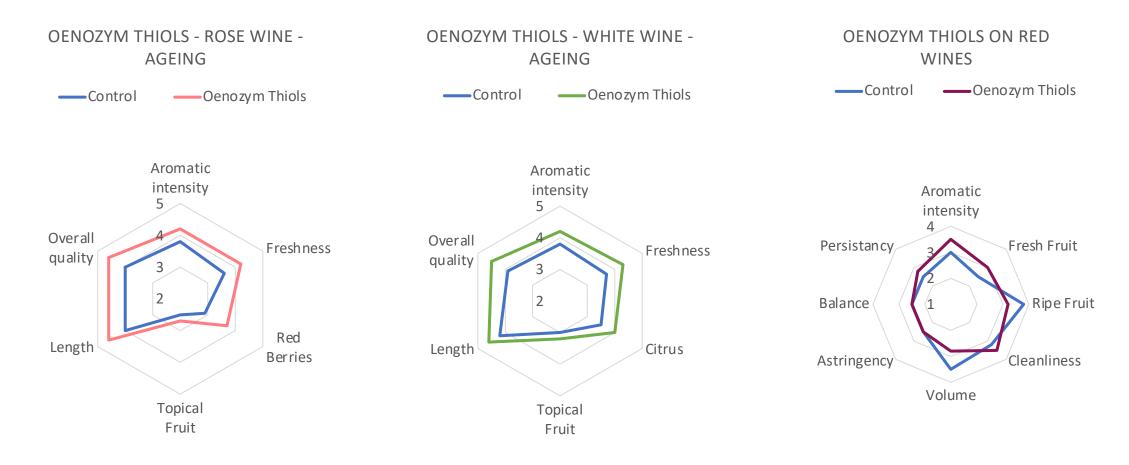
- Liquid pectinase with β-Lyase and β-Glycosidase activities
- Express thiols precursors + terpenes/norisoprenoids
- Increase aromatic intensity of wines, wine freshness
- Applications:
 - During fermentation, Ageing, Pre-bottling
 - 4 6 mL/hL

Oenozym® Thiols

Pectolytic preparation, for the release of thiol flavors.

THE SECRET OF VARIETAL AROMAS

€


WWW.LAMOTHE-ABIET.COM Solutions for winemaking

Oenozym THIOLS: Winery Trial Results

Impact of the addition of Oenozym Thiols (5 ml/hL) on wines during ageing. Contact time: 3 weeks.

COSTRAL

CHER

vaslin BU

Tasting

• Control: Red Blend PN

• Oenozym Thiols

- Added 11/07/2022
- 5 ml/hL
- Temp: 65°F

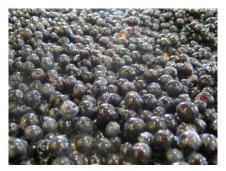
Oenozym® Thiols

Pectolytic preparation, for the release of thiol flavors.

THE SECRET OF **VARIETAL AROMAS**

WWW.LAMOTHE-ABIET.COM Solutions for winemaking

DSTRAL


HER

Climate Change: Winemaking Solutions

- pH increases
 - Excellence XFRESH to naturally acidify wines
 - SO₂ alternative for microbial stability: Excellence B-NATURE/KILLBRETT
 - Finishing products to balance mouthfeel
- Change in aromatic maturity: lack of freshness
 - Boost aromatic production during fermentation: OPTITHIOLS/OPTIESTERS
 - Express varietal aromas during ageing: **OENOZYM THIOLS**
- Higher sugar concentration => higher alcohol content
 - Excellence XFRESH to naturally decrease alcohol content
- Offset phenolic maturities
 - Finishing products to balance mouthfeel
- Raisins, heterogeneity in berries, ...
 - Quality destemming, Sorting

Mouthfeel Balance Trial Tasting 11.15- 12.15 Booth #718

THANK YOU FOR YOUR ATTENTION

CONTACT | eglantine.chauffour@buchervaslin.com

| WEBSITE | <u>www.bvnorthamerica.com</u>

Visit Us at Booth #441

Join Us Booth #718 – Hall Flower – 11:15-12:15 - Mouthfeel Balance Trial Tasting

www.bvnorthamerica.com

@buchervaslinnorthamerica

Thank You to Our Sponsors!

Presenting Sponsor		IS USA y moves success		
Silver Sponsors	CARLE MACKIE POWER & ROSS	du wine complian	DIGITAL AGE	States one want and
Additional Sponsors	365WINETRAD	E 🚸 Ame AgCr	rican edit \$\$\$atpgr	oup BPM
A BS	G	URO STAMPA	Fermentis	fermentor
	red <mark>chir</mark> p	© Sonoma Sterlin Limousines, Inc		
cloverdale <u>art</u>	⁄z alliance 🔞	ANTA ROSA UNIOR COLLEGE	SONOMA STATE	

@WINexpo

PRODUCED BY WINE INDUSTRY NETWORK

#WINexpo