

MODERATOR

Anne Flesch Technical Sales Support Manager, the Americas / Fermentis

Simplifying

the Use of Active

Dry Yeast Through Direct Inoculation or

Simple Rehydration

Han Han Senior Winemaker / Bear Creek Winery

James Roblee Technical Support Representative / ATPGroup

Erica Stancliff Winemaker / Trombetta Family Wines

Conference Track

Presented by:

ADVISOR

Track: Winemaking

1:00pm - 2:00pm

James Wall Winemaker / O'Neill Vintners and Distillers

@WINexpo

PRODUCED BY WINE INDUSTRY NETWORK

#WINexpo

SIMPLIFY THE USE OF YEAST TODAY'S AGENDA

HOW IS YEAST IMPLEMENTED TODAY AND WHAT IS AN EASY-TO- USE YEAST?

HOW TO IMPLEMENT DIRECT PITCHING AT YOUR WINERY

THE TRIALS TASTING TODAY

WINERIES CASE STUDIES

YEAST PRODUCTION EXPERTISE

PANEL DISCUSSION

FERMENTIS CERTIFICATION VALIDATION PROCESS

HOW IS YEAST IMPLEMENTED TODAY AND WHAT IS AN EASY-TO- USE YEAST?

1.YEAST REHYDRATION TODAY YEAST REHYDRATION TODAY

1.YEAST REHYDRATION TODAY

WINEMAKERS CONCERNS DURING HARVEST

WHAT IS AN EASY-TO-USE YEAST?

- Fermentis E2U[™] (Easy-to-Use) is a certification on Fermentis' SafOeno[™] Active Dry Yeast (ADY) that allows the winemakers to inoculate the yeast in flexible ways.
- It is related to an **expert ADY production process** and undergoes a **strict validation process** at Fermentis.
- It covers most of Fermentis SafOeno[™] yeast portfolio with different aromatic and technical characteristics.
- There are others 'direct pitch' yeasts on the market with different certifications/ recommendations.

1.WHAT IS AN EASY-TO-USE YEAST

INOCULATE IN FLEXIBLE WAYS

CHOOSE YOUR OWN WAY!

Acclimatization optional

THE TRIALS TASTING TODAY

2

2. TASTING

WINE TASTING TODAY – TRIAL 1

Inoculation temp: 13°C/ 55°F Fermentation temp: 17°C/ 62°F Chaptalisation to 12.1% vol. Oxygenation at density 1.05

Inoculation conditions:

- <u>**R1</u>** : Direct pitching in the must</u>
- <u>R2</u>: Rehydration in cold water (15 min / 15°C) then inoculation
- <u>R3</u>: Rehydration (15 min / 35°C) then addition of must

DCD	
PCK	At 2/3 ALF
R1	100 % implantation
R2	90 % implantation
R3	100 % implantation
R1 R2 R3	90 % implantation 90 % implantation 100 % implantation

WINES

	ALF (days)	Ethanol (% vol.)	G+F (g/L)	TA (g H2SO4/L)	VA (gH2SO4/L)	pН	Malic acid (g/L)	TSO ₂ (mg/L)
R1	17	12.16	< 0.5	4.83	0.29	3.26	3.3	48
R2	17	12.14	< 0.5	4.76	0.28	3.25	3.2	46
R3	17	12.11	< 0.5	4.82	0.28	3.26	3.3	47

2. TASTING WINE TASTING TODAY – TRIAL 2

CLARKSBURG MERWIN VINEYARD 2022 CHENIN BLANC YEAST SAFOENO SH 12

Erica Stancliff - PANELIST Winemaker / Trombetta Family Wines

- Harvested 9/16/22 (4.63 tons) at 22.5 brix
- Direct to bladder press, no destem.
- Yeast inoculated at 57°F with two different modalities R1 and R2
- Fermented in 50% neutral French oak and then 50% stainless steel drums.
- It was a long and slow fermentation between 55-61°F

Inoculation conditions:

- <u>**R1**</u> : Direct pitching in the must
- <u>R2</u>: Rehydration (15 min / ~35°C) and acclimatization with must before inoculation

	Implantation			
R1	100 % implantation			
R2	100 % implantation			

YEAST PRODUCTION EXPERTISE

3. THE PRODUCTION EXPERTISE BEHIND FERMENTIS CERTIFICATION

PRODUCTION PROCESS KNOW-HOW

3. THE PRODUCTION EXPERTISE BEHIND FERMENTIS CERTIFICATION

MULTIPLICATION KNOW-HOW

Asexual reproduction (budding cycle) Spindle Segregation Division Migration Cytokines Replication STOP "Doors" are open for sugar assimilation Yeast shaping

Sugar transport _____

Optimal membrane shape and composition:

- Fix the yeast in its best physiological state for a direct fermentation of the present sugars (doors open!)
- Optimal amount of sterols, glycerol, glycogen and trehalose
 for membrane fluidity and protection.
- Addition of vegetable based
 emulsifier to cream yeast to protect

DRYING KNOW-HOW

> Optimize the condition for the yeast to resist to drying and future rehydration

FERMENTIS VALIDATION PROCESS

2 STEPS TO GET AN E2U[™]-VALIDATION

IF THE STRAIN SHOWS

- a high and preserved viability in all rehydration conditions
- maintained fermentation performances
- and an equivalent organoleptic profile whatever its mode of preparation

IT IS OFFICIALLY DECLARED E2U[™].

A TEST OF VIABILITY AFTER REHYDRATION

in pure or up to 25% sugared water and at a range of temperatures from 10° C to 43° C (50°F to 109°F).

ONE OR SEVERAL MICROVINIFICATIONS

whose conditions are specifically chosen according to the main types of wine targeted by the selected strain. Prior to the fermentation, the yeasts are prepared in three different ways.

THE USUAL WAY

Rehydration in tap water at 35/37°C (95/98.6°F), then progressive acclimatization to must temperature, with must addition before inoculation.

• COLD

Rehydration in tap water at 15°C for 15 minutes.

MUST

Direct pitching.

4. FERMENTIS VALIDATION PROCESS TRIALS FOR E2UTM CERTIFICATION THE EXAMPLE OF SAFOENOTM HD S135

PRESERVE D YEAST VIABILITY

4. FERMENTIS VALIDATION PROCESS TRIALS FOR E2UTM CERTIFICATION THE EXAMPLE OF SAFOENOTM HD S135

Yeast preparation conditions: Usual: rehydration in tap water at 35/37°C (95-98,6°F) then progressive acclimatization to must temperature with must addition before inoculation, Cold: rehydration in tap water at 15/17°C (59-62,6°F), Must: direct pitching. Dotted line: average fermentation temperature.

Fermentis

Mendoza, Argentina, Malbec

4. FERMENTIS VALIDATION PROCESS

TRIALS FOR E2U[™] CERTIFICATION THE EXAMPLE OF SAFOENO[™] HD S135

TRIANGULAR TASTING

Usual vs Cold	NS
Usual vs Must	NS
Cold vs Must	NS

NS: non significant differences.

Mendoza, Argentina, Malbec

HOW TO IMPLEMENT DIRECT PITCHING AT YOUR WINERY

5- IMPLEMENT E2U[™] AT YOUR WINERY

DIRECT PITCHING - RED WINES

INTRODUCE THE ACTIVE DRY YEAST DIRECTLY

Option 1: **Spray ADY** (yeast in water suspension) **directly on the grapes homogeneously** at reception.

□ Maintain <10°C all along prefermentation stages.

Bioprotection benefits

Option 2: **Pour ADY** (or ADY in suspension in 10x its weight of juice) **directly into the juice after the destemmer-crusher** and before pumping to the fermentation tank.

□ Maintain <10°C all along prefermentation stages. Option 3: **Pour ADY** (or ADY in suspension in 10x its weight of juice) **directly into the fermentation vessel** with a **good homogeneization**.

5- IMPLEMENT E2U[™] AT YOUR WINERY

DIRECT PITCHING – WHITES & ROSES

INTRODUCE THE ACTIVE DRY YEAST DIRECTY

Option 1: Spray ADY (yeast in water suspension) on the grapes homogeneously at reception.
Only with gentle clarification and if the temperature is maintained at <10°C all along pre-fermentation

stages.

Option 2: **Pour ADY** (or ADY in suspension in 10x its weight of juice) **directly into the must just after pressing** (alt crushing).

 Only with gentle clarification and if the temperature is maintained at <10°C all along pre-fermentation stages. Option 3: **Pour ADY** (or ADY in suspension in 10x its weight of juice) **directly into the juice during the tank filling** or on the surface of the juice when the tank is full with good homogenization. Alternative: in barrel.

5- IMPLEMENT E2U[™] AT YOUR WINERY

ADDITIONAL TIPS TO THE ENOLOGIST

ADY dosage is not affected by the inoculation method. For still wine: 20g/hl.

Recommended nutrition protocol is not affected by the inoculation method. See our protocols.

Always sprinkle the yeast in a liquid phase, not on the dry fruit.

Do not add the ADY to the fermenter before the juice/must.

Always ensure a good diffusion/homogeneization to the entire volume rapidely.

Do not add the ADY on top of other additions without homogeneization (acids, KMBS, etc.)

Do not realize hybrids methods between direct pitching and rehydration. If you rehydrate in water, wait at least 15 min before pitching the yeast cream.

FIELD TRIALS EXAMPLES

6

SAFŒNO[™] GV S107 TRIAL PROTOCOL

SafŒno[™] GV S107 trial was carried out by a **North Coast Winery, California**, with **Chardonnay** form a Central Coast AVA in 2017.

Two Inoculation Conditions:

- Rehydration: Rehydration for 20 minutes in tap water at 37°C and acclimatization of 10 min with chardonnay must before inoculation.
- E2U: Direct inoculation/pitch of the ADY in the fermentation tank at 55°F
- Fermentations in **25,000 gallons tanks**
- Juice homogeneized as well as possible between the two fermenters
- Additions to the must were also similar between the two tanks (acidification with tartaric acid and yeast nutrient DAP and yeast autolysate in the first 1/3 of the fermentations).
- Fermentation temperature target was 55°F/13°C.
- No malolactic fermentation.

6. CALIFORNIA CHARDONNAY LARGE SCALE TRIAL

FERMENTATION KINETICS, TEMPERATURE & YEAST IMPLANTATION

MUST AND WINE ANALYTICAL PARAMENTERS

With Rehydration ____E2U direct pitch

titratable acidity	6.
pН	3.5
L-malic acid	3.4
tartaric acid	4.
brix	23.
glucose + fructose	23
ammonia	15
alpha-amino compounds (as N)	14
yeast assimilable nitrogen	27
potassium	168

5.5	g/L
53	
45	g/L
4.5	g/L
3.4	degrees
37	g/L
52	mg/L
47	mg/L
72	mg/L (as N)
80	mg/L

titratable acidity	6.3	g/L
pН	3.53	•
L-malic acid	3.49	a/L
tartaric acid	4.6	g/L
brix	23.4	degrees
glucose + fructose	238	g/L
ammonia	139	mg/L
alpha-amino compounds (as N)	150	mg/L (as N)
yeast assimilable nitrogen	264	mg/L (as N)
potassium	1800	mg/L

Post fermentation

free sulfur dioxide molecular sulfur dioxide total sulfur dioxide	<2 <0.10	mg/L mg/L			free sulfur dioxide molecular sulfur dioxide total sulfur dioxide	<2 <0.10 33	mg/L mg/L mg/L
titratable acidity pH	6.6	g/L	Wine	s of	titratable acidity pH	6.7 3.51	g/L
volatile acidity(acetic)	0.28	a/L	simi	lar	volatile acidity(acetic)	0.28	g/L
L-malic acid	3.07	g/L	analy	tical	L-malic acid	3.06	g/L
L-lactic acid	< 0.05	g/L	prof	iloc	L-lactic acid	< 0.05	g/L
glucose + fructose	< 0.1	g/L	pror	lies	glucose + fructose	<0.1	g/L
ethanol at 20C	14 53	% vol			ethanol at 20C	14.57	% vol
ethanol at 60F	14.48	% vol			ethanol at 60F	14.52	% vol

6. CALIFORNIA CHARDONNAY LARGE SCALE TRIAL

WINE AROMATICS ANALYSIS

- Trend of the E2U direct pitch scenario with higher concentration of aromatic compounds but not significant for most compounds.
- Only 2/13 molecules are significantly different + toward the direct-pitch wine.
- With considering the threshold perceptions, only the β-Damascenone could significantly affect the wine aromatic perception as aroma enhancer.

Aromatic compounds analysis shows little differences between the wines

TRIANGULAR TASTING & MAIN CONCLUSIONS

Triangular tasting

- 8 people professional panel evaluated 3 sets of triangle tests for a total of 24.
- At the 0.1% level of significance, the wines were perceived to be the same or there was no perceived sensory difference between the two wines.

CONCLUSION

This large scale trial on Chardonnay showed that direct pitching of $E2U^{TM}$ SafOenoTM GV S107 did not affect :

- \checkmark The yeast ability to implant well in the must,
- \checkmark Its fermentation kinetics,
- \checkmark The wine analysis ,
- \checkmark The wine aromatic molecules concentration to a significant amount,
- \checkmark The wine quality as confirmed by a panel of taster.

SAFOENO[™] HD A54 CASE STUDIES

Grape Variety: Maccabeo Location: Languedoc Roussillon, France Vintage: 2020

Yeast & Parameters ADY: SafŒno[™] HD A54 at 20g/hl Long lag phase + overexpressing acetate esters Pre-fermentation temperature <10°C/50°F AF temperature: 16-18°C/61-64°F

EXPERIMENTATION A 4 direct pitch inoculation times in pre-fermentative stages **EXPERIMENTATION B** 4 inoculation methods in the fermentation tank

6. SAFOENO[™] HD A54 CASE STUDIES B: IMPACT OF THE MODE OF INOCULATION IN THE FERMENTER

PROTOCOL

4 inoculation modes in the fermenter (after settling)	Code	
Without rehydration, direct pitch , T° of must: 10°C	(v) DP10	67
Without rehydration, direct pitch and after T° rise to 16°C	(vi) DP16	
With rehydration in cold water (18°C) and after T° rise to 16°C	(vii) Reh16	
With rehydration in warm water (35°C), acclimatization and after T° rise to 16°C	(viii) Acc16	

6. SAFOENOT HD A54 CASE STUDIES B: IMPACT OF THE MODE OF INOCULATION IN THE FERMENTER

RESULTS

Kinetics and microbial population in the fermentative phase

Significative differences in kinetics that can be explained by a better implantation for the direct pitch scenarii.

? Advantage of DP to save time in must with high microbial load?

6. SAFOENO[™] HD A54 CASE STUDIES

B: IMPACT OF THE MODE OF INOCULATION IN THE FERMENTER

RESULTS

Wines' analytical parameters

	(v) DP 10	(vi) DP 16	(vii) Reh 16	(viii) Acc 16
ABV (%)	15.29	15.27	15.27	15.19
Glu+Fru (g/L)	1	0.7	1.5	2
Total Acidity (g/L tartaric acid)	5.95	6.04	5.99	6.18
Volatile Acidity (g/L acetic acid)	0.28	0.32	0.45	0.55
Total SO ₂ (mg/L)	60	64	67	66
Free SO ₂ (mg/L)	15	16	12	12
рН	3.23	3.23	3.25	3.24
Malic acid (g/L)	1	1	1	1
Total ethanal (g/L)	21	19	27	29
Lactic acid (g/L)	0.2	0.2	0.2	0.1

Significative differences especially in volatile acidity due to lower implantation rate/more strains identified in Reh16 and Acc16.

6. SAFOENOT HD A54 CASE STUDIES B: IMPACT OF THE MODE OF INOCULATION IN THE FERMENTER

Dosage of Acetate esters (OAV)

Significative differences for the isoamyl acetate concentration between the wines and a trend for some ethyl esters... resulting in significative differences in the tastings.

Tasting with

- ✓ 18 different variables
- ✓ 6 professional tasters
- ✓ ANOVA statistic analyses
- SIGNIFICANT
 DIFFERENCE especially for amylic perception.

SAFOENO[™] HD A54 STUDIES - MAIN CONCLUSIONS

EXPERIMENTATION A 4 direct pitch inoculation times in pre-fermentative stages

- ✓ Some E2UTM certified strains can be direct pitched at different prefermentative stages with similar performances.
- ✓ With precaution: maintain temperature < 10°C in prefermentation phases and appropriate yeast selection.

EXPERIMENTATION B 4 inoculation methods in the fermentation tank

- ✓ In most cases no impact of direct pitching vs rehydration...
- ✓ But in some cases positive impact of direct pitching allowing to occupy ecological niche sooner especially in must coming with high microbial load and/or bad sanitary state.

PANEL DISCUSSION

7. PANEL DISCUSSION PANEL INTRODUCTION

Anne Flesch - MODERATOR

Technical Sales Support Manager, the Americas / Fermentis

Han Han - PANELIST Senior Winemaker / Bear Creek Winery

Erica Stancliff - PANELIST Winemaker / Trombetta Family Wines

James Wall - PANELIST Winemaker / O'Neill Vintners and Distillers

James Roblee - PANELIST Technical Support Representative / ATPGroup

7. PANEL DISCUSSION PANEL DISCUSSION

What were your apprehensions/questions before direct pitching ? What did you expect could happen when changing your inoculation method?

What is your overall experience with direct pitching? What type of wine(s)fermentation(s)/yeast(s) did you use? How did you proceed with

direct pitching practically at your winery? What is your global experience?

What are the benefits you think it gives you when compared to a more traditional way of using yeasts?

Are you/would consider continuing direct pitching?

CONCLUSIONS AND Q&A

8

MANY POTENTIAL BENEFITS

YOU

SAVE TIME YOU INCREASE WORKERS' SAFETY YOU MAKE SAVING ON LABOR, REHYDRATION EQUIPEMENT AND PRODUCTS

&

GAIN COMFORT YOU REDUCE HUMAN'S MISTAKE WITHOUT COMPROMISE ON THE QUALITY:

- FERMENTATION
- YEAST CHOICE
- FINAL PRODUCT

YOU ACT GREEN BY REDUCING POLLUTION AND USE OF RESOURCES

who make wine!

Thank you for your attention! Any questions?

Please send your questions to a.flesch@fermentis.lesaffre.com

f

Thank You to Our Sponsors!

@WINexpo

PRODUCED BY WINE INDUSTRY NETWORK

#WINexpo